• 0 Posts
  • 56 Comments
Joined 2 years ago
cake
Cake day: June 16th, 2023

help-circle





  • This is a bit outside my field. That said I don’t think so.

    The overall crystal should be very weakly magnetic. You want strong magnet with a high flux density so the electric field can push or pull against it.

    I think this would be more useful in quantum computing as you get two bits polarity and spin. Or high density storage.

    But who knows. There are clever physicists out there that know a lot more about this. They presumably see many more possibilities then I do. If the effect can be interrupted you could stitch between states. Like turning a magnet on and off. That would have uses like you described.


  • This article is a mess and badly written.

    Basicly magnetism comes from electron spin orientation. There are two well known spin configurations.

    Ferromagnetism: there is at least one electron with a spin that isn’t paired with an opposite spin electron. That atom then has a north and south magnetic pole. Like iron. Arrange all the atoms pointing the same way and you have a refrigerator magnet.

    antiferromagnetism: all the electrons in the atom are paired with an opposite spin election. It’s complicated but basically they couple together and there isn’t a magnetic pole outside the atom. Like in copper.

    Altermagnetism: what this article is about. You have a crystal of atoms with an unpaired electrons. The crystal would normally be ferromanetic. However they are arranged in a regular set of pairs that cause the electron spin to cancle out. Think of a checkerboard pattern where each white square cancels a black square next to it.

    The antiferromagnetism and altermagnetism both have the spins cancelled out but the mechanism is different so there are different properties. Kramers degenerate vs wavevector.

    In theory this gives you an extra state spin. So a magnetic drive uses a pattern of north and south to encode information. Ie NNSN becomes 0010.

    With this you have north, south but also spin left, right. So you can encode more information.



  • Yup. Part of what makes python so easy and fast is the lack of things built into languages so they are maintainable in a large project.

    Take duck typing. It’s so easy when you have a small project that can fully understood by a developer. Get into a big project with 10000 classes and you need explicit classes and interfaces just to understand what is going on.











  • For ntsc vhs players it wasnt a component in the vcr that was made for copy protection. They would add garbled color burst signals. This would desync the automatic color burst sync system on the vcr.

    CRT TVs didn’t need this component but some fancy tvs would also have the same problem with macrovission.

    The color burst system was actually a pretty cool invention from the time broadcast started to add color. They needed to be able stay compatible with existing black and white tv.

    The solution was to not change the black and white image being sent but add the color offset information on a higher frequency and color TVs would combine the signals.

    This was easy for CRT as the electron beam would sweep across the screen changing intensity as it hit each black and white pixel.

    To display color each black and white pixel was a RGB triangle of pixels. So you would add small offset to the beam up or down to make it more or less green and left or right to adjust the red and blue.

    Those adjustment knobs on old tvs were in part you manually targeting the beam adjustment to hit the pixels just right.

    VCRs didn’t usually have these adjustments so they needed a auto system to keep the color synced in the recording.